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Visualizations of the 3-D flow in a 4:1 square–square sudden contraction for two
viscoelastic Boger fluids and two Newtonian fluids were carried out at low Reynolds
numbers. In these creeping flow conditions, the vortex length remained unchanged for
Newtonian fluids, whereas a nonmonotonic variation with flow rate was observed for the
Boger fluids. Initially, the corner vortex slightly increased with flow rate to a local peak
at a Deborah number of De2 � 6, before decreasing significantly to a minimum at De2 �
15 (De2 is based on downstream characteristics). Finally, for Deborah numbers � 20
there was intense vortex enhancement until a periodic flow was established at higher flow
rates (De2 � 45–52). The strong elastic vortex enhancement was preceded by the
appearance of diverging streamlines on the approach flow and, for the Boger fluid with
higher polymer concentration, vortex enhancement took place through a lip vortex
mechanism. © 2005 American Institute of Chemical Engineers AIChE J, 51: 2908–2922, 2005
Keywords: viscoelastic flow, Boger fluid, diverging flow, visualization, 3D contraction
flow

Introduction

Flow visualizations have always been important in fluid
mechanics and motivated a wealth of research in the field, as
illustrated in Van Dyke’s classic work An Album of Fluid
Motion.1 They provide a clear insight of many phenomena and
reinforce elaborate mathematics. Non-Newtonian fluids are
usually more viscous than common Newtonian fluids and their
flows are frequently investigated by flow visualization because

they tend to take place in the laminar regime. A compilation of
flow visualization studies specifically for non-Newtonian flu-
ids, was written by Boger and Walters in 1993,2 and constitutes
a representative sample of works published in this important
subfield of fluid mechanics.

Sudden contraction flows are classical benchmark problems
used in computational rheology,3 with the explicit assumption
of two-dimensional (2-D) flow to simplify the simulations, and
a large number of visualization studies in planar and axisym-
metric contractions have been published in the literature. The
flow behavior of non-Newtonian fluids in these simple config-
urations can be very surprising; there can be substantially
different flow patterns for fluids with apparently similar
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rheological characteristics, and distinct patterns also arise in
comparable configurations as a result of geometric differences
(such as planar vs. axisymmetric).

The following paragraphs provide a review of relevant
works in sudden contraction flows of axisymmetric, planar, and
square–square type, and a summary of the main conclusions is
presented in Table 1.

Axisymmetric contractions

For axisymmetric contractions, pioneering visualization
studies with viscoelastic fluids were carried out by Cable and
Boger4-6 and Nguyen and Boger,7 who also reviewed previous
work in the field. At low flow rates they observed that the
salient corner vortex was controlled by viscous forces and a
normalized length of 0.18 was measured, with the normaliza-
tion based on the upstream pipe diameter. At higher flow rates
a dramatic vortex growth was reported for all geometries (cf.
Table 1) and for both shear-thinning and constant viscosity
elastic fluids. At even higher Deborah numbers the flow be-
came asymmetric and time dependent. At intermediate condi-
tions Cable and Boger observed the onset of diverging flow
upstream of the contraction plane and the simultaneous reduc-
tion of the salient vortex length, a phenomenon partially attrib-
uted to inertia. Fluid elasticity was considered the cause for the
flow instabilities because the Reynolds numbers were well
below those associated with transitions arising from inertial
effects.

From the mid-1980s the 4:1 contraction became the focus of
a variety of experimental and numerical work. The experimen-
tal work concentrated on the investigation of low Reynolds
number flow transitions and elastic instabilities and relied on
several techniques, as in McKinley et al.8 At that time the
numerical methods were usually unable to predict accurately
the subcritical steady flows and the emphasis was focused on
improving the numerical techniques.

In 1986 Boger et al.9 investigated the behavior of two
different Boger fluids having similar shear properties and yet
found quite different vortex dynamics; for a polyisobutylene in
polybutene fluid (PIB/PB) vortex enhancement was preceded
by the growth of a lip vortex, whereas for polyacrylamide
dissolved in corner syrup (PAA/CS) the lip vortex was absent.
It was concluded that an additional measure of extensional
properties had to be taken into account and in his 1987 review
paper10 Boger suggested that parameter to be the extensional
viscosity, and described in more detail the flow dynamics in the
sudden contraction with increasing Deborah number. For some
fluids only a convex corner vortex exists, growing in size and
becoming concave as elasticity increases. For other fluids the
corner vortex extends to the reentrant corner, and a lip vortex
is formed. For high contraction ratios, the two vortices are
initially separated, but similar distinct vortices were also seen
by McKinley et al.8 in small contraction-ratio experiments. As
the elasticity increases, the strength of the lip vortex grows at
the expense of the corner vortex, whereas the length of the
latter remains unchanged. Eventually, the lip vortex occupies
the whole contraction plane region and a further increase in the
Deborah number leads to a larger concave-shaped vortex. At
even higher Deborah numbers a small pulsating lip vortex now
appears and leads to unsteady behavior. All these features have

been observed in axisymmetric contractions under conditions
of negligible inertia.

Recent experimental investigations by Rothstein and Mc-
Kinley11,12 clearly demonstrate the important role of exten-
sional viscosity on the dynamics of vortex growth and on the
associated enhanced pressure drop in contraction flows. They
conjectured that the extra pressure drop results from an extra
dissipative contribution to the elastic stress arising from a
stress-conformation hysteresis in the nonhomogeneous exten-
sional flow generated near the contraction plane. Such conjec-
ture has implications on constitutive-equation modeling and led
to the recent numerical simulations of Phillips et al.13 with a
closed form of the adaptive length scale (ALS) model of Ghosh
et al.,14 which accounts for hysteresis of the conformation
tensor. These authors were able to qualitatively predict large
pressure drop enhancements, although there were still discrep-
ancies in comparison with experiments.

Planar contractions

Investigations in planar contraction flows began soon after
those in axisymmetric contractions and, although they con-
firmed some of the findings observed for the circular geome-
tries, some notable discrepancies also emerged. Walters and
Webster15 found no significant vortex activity for Boger fluids
in the 4:1 case, in marked contrast to observations in 4.4:1
circular contractions. However, for shear-thinning fluids vortex
growth was observed in both planar and axisymmetric geom-
etries. To help clarify these differences, Evans and Walters16

studied the flows of shear-thinning and constant viscosity elas-
tic fluids (aqueous solutions of polyacrylamide) through planar
contractions (contraction ratios of 4:1, 16:1, and 80:1) and
always found strong vortex enhancement for the shear-thinning
fluids, even for the smaller contraction ratio, and difficulties in
observing vortex activity for Boger fluids. They also reported
that both the contraction ratio and fluid elasticity contributed to
vortex enhancement with shear-thinning fluids. However, for
the larger contraction ratios a lip vortex was seen and a growth
mechanism similar to that previously found for circular dies
was observed, although in the 4:1 planar contraction there was
no sign of such a lip vortex. In a subsequent paper Evans and
Walters17 looked at the behavior of shear-thinning fluids in the
smaller contraction ratio of 4:1 to investigate whether a lip
vortex mechanism of vortex growth was still at work. They
found that for the less viscous/concentrated polymer solutions
such lip vortex could be generated and that inertia played a
critical role in separating the corner and lip vortices. Indepen-
dent lip and corner vortices were also found in the numerical
simulations of creeping flow by Alves et al.18,19 for a 4:1
contraction with Boger fluids represented by either the upper
convected Maxwell (UCM) or the Oldroyd-B models.

The relevance of extensional viscosity in planar contraction
flows was emphasized in the experimental investigations of
White and Baird,20,21 who used two polymer melts: polystyrene
(PS) and low-density polyethylene (LDPE). Whereas a vortex
was observed for the LDPE, it was absent from PS flows and
the difference was attributed to the distinct extensional viscos-
ities, given their similar weak shear-thinning behavior. This
was corroborated when the same authors later used a constitu-
tive equation that represented accurately the measured exten-
sional viscosity of both fluids,22 and were able to predict

AIChE Journal 2909November 2005 Vol. 51, No. 11



Table 1. Relevant Investigations of Viscoelastic Fluid Flow in Axisymmetric, Planar, and Square Contractions*

Ref. Authors (year)
Flow Conditions and Test

Fluids Main Conclusions

4–6 Cable and Boger
(1978, 1979)

Circular, � � 2, 4
Shear-thinning fluids

Vortex flow regime with vortex growth at low flow rates.
Divergent flow regime at intermediate flow rates and

inertial effects.
Unstable flow regime at large flow rates.

7 Nguyen and Boger
(1979)

Circular, 4 � � � 14.6
Boger and shear-thinning

fluids

Sequence of flow regimes referring to lip vortex
behavior:

(1) vortex growth; (2) asymmetric flow; (3) rotating
flow; (4) helical flow (pulsating).

15 Walters and Webster
(1982)

Planar and circular, � � 4
Boger and shear-thinning

fluids

Boger fluids: substantial vortex activity in circular
contraction and virtually none in planar case.

Shear-thinning fluid: substantial vortex activity in circular
and planar contractions.

Rounding the corner dramatically changes flow.
24 Walters and Rawlinson

(1982)
Planar, � � 13.3
SQ/SQ, � � 13.3
Boger fluids

No noticeable vortex activity for the 13.3:1 planar
contraction.

Significant vortices observed for the 13.3:1 3-D SQ/SQ
contraction.

Vortex enhancement with increasing flow rate.
Slight asymmetry at highest flow rates.

9 Boger et al. (1986) Circular, 4.4 � � � 16.5
Boger fluids

Simultaneous lip and corner vortices, with lip vortex
dominating as De increases:

De � 3 no influence of � on lip vortex;
De � 3 influence of � on lip vortex.

16 Evans and Walters
(1986)

Planar, � � 4, 16, 80
Boger and shear-thinning

fluids
SQ/SQ, � � 16
Boger fluids

Planar:
Boger fluids: difficulty in observing vortex activity.
Shear-thinning fluids: substantial vortex activity in all

cases.
Large �: vortex growth associated with lip vortex.
Small �: vortex growth is not associated with lip

vortex.
SQ/SQ:

Strong vortex enhancement for Boger fluids.
20 White and Baird

(1986)
Planar, � � 5.9
Weakly shear-thinning

melts

Vortex growth for LDPE due to early onset of shear-
thinning and strain hardening extensional viscosity.

No vortex growth for PS which has no strain hardening
extensional viscosity.

Relevance of extensional viscosity.
21 White and Baird

(1988)
Planar, � � 4, 8
Weakly shear thinning

polymer melts (LDPE,
PS)

Confirmation of the observations of White and Baird20

for lower and higher contraction ratios.

22 White and Baird
(1988)

Planar, � � 4, 8
Numerical, Full PTT, � �

0

Simulations confirm experiments of White and Baird21 in
terms of streamlines and birefringence.

Size and intensity of vortex determined by parameter �,
which controls extensional viscosity in the PTT
model.

17 Evans and Walters
(1989)

Planar, � � 4
Shear-thinning fluids

For some fluids there are lip and corner vortices, with the
former responsible for the vortex enhancement
mechanisms, as for large �.

For mobile fluids inertia separates corner and lip vortices.
8 McKinley et al. (1991) Circular, 2 � � � 8

Boger fluid
Sequence of flow regimes near the lip vortex: (1) stable;

(2) time periodic; (3) quasi-periodic; (4) aperiodic.
Time-dependent 3-D flow for 2 � � � 5 at high flow

rates.
Rounding corner delays transitions.

46 Boger and Binington
(1994)

Circular, � � 4
Sharp and rounded

reentrant corner
Boger fluids

Each of the two fluids studied react differently to the
rounded corner: dramatic changes are observed for
the polyacrylamide based Boger fluid, in deep
contrast to less dramatic changes observed for the
polyisobutylene based fluid.

47 Purnode and Crochet
(1996)

Numerical simulations
with a FENE-P model

Planar, � � 4, 16, 80
Shear-thinning fluids

Predictions qualitatively match the experimental results
of Evans and Walters.16,17

Lip vortex not associated with inertia.

26 Mompean and Deville
(1997)

Numerical, Oldroyd-B
model

2-D, � � 4
3-D planar � � 4

2-D: no prediction of lip vortex; decrease of corner
vortex size with Deborah number.

3-D: Corner vortex in center plane always smaller than
in 2D case.
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numerically, at least qualitatively, the different vortex patterns
observed.

The surprisingly different behavior of Boger fluids in circu-
lar and planar contractions has been further studied by Nigen
and Walters.23 Experiments in both types of contraction were
conducted with Newtonian and Boger fluids having identical
shear viscosities and it was demonstrated that, although there
were higher extensional strain rates in the planar geometry than
in the circular die, virtually no elastic vortex enhancement was
found in the former geometry in contrast to the latter. Given
that the vortex dynamics is a complex function of strain rates,
strains, and molecular conformation histories,12 these differ-
ences are not so surprising.

Square–square contractions

Experiments with flows through square–square contractions
are scarce, partly because they are more complex but also
because of their inadequacy to be used for comparison with
2-D simulations. In their 1982 experiments, Walters and Raw-
linson24 reported similarities between the flows through circu-
lar and square–square contractions. In particular, the differ-

ences found between flows of Boger fluids in planar and
circular contractions were also seen for planar and 13.3:1
square–square contractions and at intermediate Deborah num-
bers a diverging flow was seen upstream of the contraction as
originally observed by Cable and Boger4 for circular geome-
tries.

In the square duct contraction, and in contrast to the 2-D
planar case, isopressure lines can close in the cross-stream
directions, as in the axisymmetric geometry, but there are now
normal stress imbalances leading to secondary flows. The dy-
namics of the vortices in combination with these new second-
ary flow structures and fluid elasticity are still to be well
characterized and understood.

In view of the above, it comes as no surprise that flow
predictions of square–square contraction flows are virtually
inexistent except for the work of Xue et al.,25 to be discussed
below. Most of the existing three-dimensional (3-D) viscoelas-
tic flow simulations in contractions basically considered the
2-D planar contraction extending along the spanwise direction
and so the 3-D effects were attributed only to the presence of
end walls. Some computations of such planar 3-D contraction

Table 1. Relevant Investigations of Viscoelastic Fluid Flow in Axisymmetric, Planar, and Square Contractions* (Continued)

Ref. Authors (year)
Flow Conditions and Test

Fluids Main Conclusions

27 Xue et al. (1998) Numerical
2-D: UCM
3-D planar: Boger and

shear-thinning fluids
(UCM, PTT with � �
0)

2-D: Lip and corner vortex growth mechanisms
depending on elasticity and Deborah numbers.
Appearance of lip vortex depends on polymer
viscosity and is promoted by inertia.

3-D planar
� UCM: confirms presence of lip vortex for some flow

conditions.
� PTT: qualitative agreement with experiments of

Quinzani et al.48

25 Xue et al. (1998) Numerical
2D and 3D SQ/SQ, � � 4
Boger and shear-thinning

fluids: UCM, PTT (� �
0)

Relevance of transient extensional behavior along
centerline. In 3-D vortex activity correlates well
with steady extensional properties, but not in 2-D.

11 Rothstein and
McKinley (1999)

Circular, � � 4
Boger fluid

Measurement of enhanced pressure drop. It is suggested
that this is attributable to an additional dissipative
contribution of polymer stress manifested in stress
conformation hysteresis.

18
42
43

Oliveira and Pinho
(1999); Alves et al.
(2000)

Planar, numerical
� � 4
UCM and PTT fluids

Lip vortex growth mechanism for UCM fluid.
No lip vortex for PTT fluid.
Streamline divergence for high Deborah flows, enhanced

by inertial effects (UCM).
Importance of mesh refinement and discretization

schemes for numerical accuracy.
12 Rothstein and

McKinley (2001)
Circular, 2 � � � 8
Various curvatures of

corner
Boger fluid

� � 2: steady elastic lip vortex
4 � � � 8: no lip vortex observed, only corner vortex.
Rounding the reentrant corner leads to shifts in the onset

of flow transitions to larger Deborah numbers.
The role of contraction ratio on vortex growth dynamics

is rationalized by using a dimensionless ratio of the
elastic normal stress difference in steady shear flow
to that in transient uniaxial extension.

23 Nigen and Walters
(2002)

Planar and circular
2 � � � 32
Boger fluids

Planar case: no sign of steady vortex enhancement
Circular: lip mechanism responsible for vortex growth

and enhanced pressure drop.
19 Alves et al. (2003) Planar, numerical; � � 4

Highly refined mesh
Oldroyd-B and PTT
(linear and exponential)
models

Lip vortex enhancement for Oldroyd-B fluid
accompanied by decrease in corner vortex.

Intense corner vortex growth for linear PTT and no lip
vortex.

High Deborah number simulations for PTT models.

*� represents the contraction ratio. Works are presented in chronological order.
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flows (in fact, quasi-2-D) were presented by Mompean and
Deville26 and Xue et al.27; their intention was mainly to illus-
trate the capabilities of their finite-volume methods in 3-D
simulations, so they did not comment on the results of their
calculations in relation to 3-D effects and in fact the detailed
3-D flow structure was not well resolved. The only 3-D effect
mentioned by Xue et al.27 was that the average velocity in a
3-D channel differs from the average velocity in a 2-D channel,
and therefore the Deborah number should be modified accord-
ingly.

In a second article, Xue et al.25 tackled the actual 3-D
square–square contraction using the Phan-Thien–Tanner model
(PTT) (with a nonzero second normal stress difference coeffi-
cient) and UCM constitutive equations. They found strong
vortex enhancement for both fluid models, in contrast to the
results for the planar contraction where only the PTT fluid
(shear-thinning fluid) exhibited vortex enhancement. These
contrasting behaviors mirror those observed experimentally for
axisymmetric and planar contraction flows, and are explained
by the 3-D nature of circular and square–square contractions.
The numerical investigations of Xue et al.25 related the calcu-
lated flow dynamics with the transient extensional viscosity of
the fluids, but nothing was reported regarding unexpected sec-
ondary flows in the contraction region or the onset of flow
instabilities; they did mention, however, the existence of the
well-known secondary flow in the fully developed straight
upstream and downstream noncircular ducts.

In conclusion, the vast majority of experimental work on
contraction flows of viscoelastic liquids has been on axisym-
metric and (approximately) planar configurations, with the
expectation that 2-D numerical simulations would allow for
adequate predictions. A square–square contraction arrange-
ment is a good compromise between geometric simplicity and
complex 3-D flow structure, and appears as a good candidate
for a prototype 3-D test case that is necessary for validating
numerical 3-D codes. However, before embarking on the heavy
task of performing full 3-D simulations of such viscoelastic
flows, both under steady and transient conditions, a thorough
experimental investigation is required. This is the motivation
for the present experimental work, which concentrates on char-
acterizing the flow patterns in square–square contractions of
elastic fluids having a constant shear viscosity.

Experimental Setup

The experimental apparatus is depicted in Figure 1. The rig
consisted of two consecutive square ducts (length: 1000 and
300 mm) and a vessel. The sides of the square ducts were 2H1

� 24.0 mm and 2H2 � 6.0 mm, respectively, thus defining the
4:1 contraction ratio. The flow rate was set by an adequate
control of applied pressure on the upper duct and frictional
losses in the long coiled pipe (T in Figure 1) located between
the smaller duct and the vessel, at the bottom of the rig. To
achieve low flow rates the coiled pipe was 8 m long and had a
diameter of 4 mm, whereas for higher flow rates the diameter
of the coiled pipe was 6 mm. Applied pressure was kept
between 0.5 and 4 bar, and the dashed lines in Figure 1
represent the pressurized air lines. This flow arrangement ad-
equately controlled the flow rate without significant constric-
tions, such as valves, that would eventually degrade the poly-

mer molecules. The flow rate was measured by a stopwatch and
the passage of the liquid-free surface at two marks in the upper
duct. In all tests the fluid temperature was measured and the
fluid properties were taken from the rheometric master curves
shown in the next section. To improve the quality of the
visualizations the rig was placed inside a dark room.

A 10 mW He–Ne laser light source was used to visualize the
flow patterns. The laser beam passed through a cylindrical lens
to generate a light sheet illuminating highly reflective tracer
particles suspended in the fluid. These were 10 �m PVC
particles (at a concentration of about 15 mg/kg fluid) added
during the preparation of the fluid. The path lines formed were
recorded using long time exposure photography with a con-
ventional camera (Canon EOS300 with a macro EF100 mm
f/2.8 lens), as sketched in Figure 2, which includes a schematic
representation of the test section. The terminal velocity of the
PVC particles was negligible: assuming Stokes flow conditions
it was estimated to be 0.15 �m/s in the less viscous Newtonian
fluid used (N85), which is three orders of magnitude smaller
than the minimum flow bulk velocity.

The shear viscosity (�) and the first normal stress difference
coefficient (�1) in steady shear flow, and the storage and loss
moduli (G�, G�) in dynamic shear flow were used to charac-
terize the rheology of the Boger fluids. These properties were
measured with an AR2000 rheometer from TA Instruments,
using a cone–plate setup with 40 mm diameter and 2° angle. A
falling ball viscometer from Gilmont Instruments (model GV-
2200) was also used for some viscosity measurements with the
Newtonian fluid N85.

Figure 1. Flow rig.
PR, pressure regulator; V1 to V6, ball valves; R, reservoir;
CL, cylindrical lens; T, long coiled pipe; S, free surface; C,
contraction plane.
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Rheological Characterization of the Fluids

Four fluids based on mixtures of glycerin and water were
investigated: two viscous Newtonian fluids (N85 and N91) and
two viscoelastic Boger fluids (PAA100 and PAA300). Their
compositions, densities, and zero-shear rate viscosities are
listed in Table 2. The Boger fluids were prepared by dissolving
a small amount of polyacrylamide (PAA; Separan AP30 pro-
duced by SNF Floerger) in the Newtonian solvent N91. To
minimize the intensity of shear thinning a small amount of
NaCl was added, as described in detail in Stokes.28 To reduce
bacteriological degradation of the solutions the biocide Kathon
LXE, produced by Rohm and Haas, was also added. The fluid
densities were measured at 21.2°C using a picnometer.

Newtonian fluids

For the N85 fluid the measured shear viscosity was � �
0.125 Pa�s at 18°C, the temperature at which the visualizations
took place. For the N91 fluid the rheometer was used to
measure the shear viscosity at temperatures ranging from 15.9
to 25.0°C. This second Newtonian fluid, which served as
solvent for the PAA solutions, was also used to evaluate the
accuracy of the rheometer and to estimate the base noise level
in dynamic tests (represented as the dashed baseline of 2G� in
Figures 3b and 4b). For N1, the measurements at �̇ � 100 s	1

indicated a zero reading within experimental uncertainty, as
they should. The uncertainty in measuring N1 was of the order
of 
10 Pa, in agreement with the specifications of the manu-
facturer for the cone-plate geometry used. For �̇ � 100 s	1

inertial effects became important, and negative values of N1

were measured. This inertial effect for Newtonian fluids was
well predicted by the following equation29:

N1,inertia � 	0.15	
2R2 (1)

where 
 and R represent the angular velocity and the radius of
the cone, respectively.

The effect of temperature on the shear viscosity for the N91
fluid is well described by an Arrhenius equation, defining a
shift factor aT of the form

ln�aT� � ln
��T�

��T0�
� �
H

R �1

T
�

1

T0
�� (2)

Figure 2. Flow visualization technique and details of the
test section.

Table 2. Composition and Properties of the Fluids (Mass Concentrations)

Designation
PAA
(ppm)

Glycerin
(%)

Water
(%)

NaCl
(%)

Kathon
(ppm)

	
(kg/m3) �0 (Pa � s)

N85 — 84.99 15.01 — 25 1221 0.125 (18°C)
N91 — 90.99 7.51 1.50 25 1250 0.367 (20°C)
PAA100 100 90.99 7.50 1.50 25 1249 0.487 (20°C)
PAA300 300 90.97 7.50 1.50 25 1247 0.735 (20°C)

Figure 3. Material parameters in steady and dynamic
shear flow for the PAA100 fluid.
(a) Open symbols for shear viscosity and first normal stress
difference coefficient; solid symbols for G� and ��; (b) com-
parison between G� and G� data (symbols) and fitting by
three-mode Oldroyd-B model (solid lines).
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where �(T0) represents the viscosity at the reference absolute
temperature T0, here taken as T0 � 293.15 K. Fitting this
equation to the experimental data gave 
H/R � 6860 K and
�(T0) � 0.367 Pa�s (more details can be found in Alves30).

Generally, the shift factor aT is defined as31

aT �
�0�T�

�0�T0�

T0

T

	0

	
(3)

where �0(T0) designates the zero shear-rate viscosity at the
reference temperature T0, and 	 and 	0 are the fluid densities at
temperatures T and T0, respectively. When the range of tem-
peratures is limited the definition of the shift factor can be
simplified by dropping the effects of density and temperature
ratios31 and thus Eq. 2 is the form adopted in this work, with
�(T) � �0(T) and �(T0) � �0(T0).

Boger fluids

For the Boger fluids the steady shear properties were mea-
sured at temperatures ranging from 15.3 to 30.0°C. The time–
temperature superposition principle was found to be valid for
both fluids and was used to build master curves. The value of


H/R obtained for the solvent was found to be adequate for the
two Boger fluids. The reduced rheological quantities (subscript
r) thus become as defined by Eqs. 4a–4d32


r � 
�T0� � aT
�T� �̇r � �̇�T0� � aT�̇�T� (4a)

G�r � G��T0� � G��T� G �r � G��T0� � G��T� (4b)

��r � ���T0� � ���T�/aT � �r � ���T0� � ���T�/aT (4c)

�r � ��T0� � ��T�/aT �1r � �1�T0� � �1�T�/aT
2 (4d)

The reduced steady shear viscosity and first normal-stress
coefficient data (�r, �1r vs. �̇r) are plotted in Figures 3a and 4a
for the PAA100 and PAA300 fluids, respectively. Both figures
also include dynamic shear data in appropriate form (��r, 2G�r/

r

2 vs. 
r) to compare the corresponding limiting behaviors at
vanishing deformations, but note their different ordinate scales.
The dynamic shear data are plotted separately in Figures 3b and
4b, which include predictions of G� and G� (solid lines), using
a three-mode Maxwell model plus a Newtonian solvent con-
tribution. The parameters of these multimode models are listed
in Table 3, at reference temperature T0.

The data in Figures 3a and 4a clearly show the limiting
behavior of the measured properties in steady and dynamic
shear flows. The reduced shear viscosity is approximately
constant at reduced shear rates in the range 0.3 to 50 s	1 for the
PAA100, whereas for the PAA300 it decreases approximately
10% per decade of reduced shear rate. At �̇r � 54 and 28 s	1

(for the PAA100 and PAA300, respectively) there is an abrupt
growth in �r and �1,r and this is accompanied by a slight
reduction in reduced shear rate (with the rheometer operating in
“controlled stress mode”). This phenomenon results from an
elastic instability leading to 3D flow, which is frequently
observed with Boger fluids in cone–plate and plate–plate
geometries, as investigated previously by Phan-Thien33 and
McKinley et al.34 More details of this instability for these fluids
can be found in Alves.30

Figures 3b and 4b show that the three-mode Oldroyd-B
model is accurate enough to predict G� and G� within the
measured range, whereas a single-mode model was found to be
unable to give accurate predictions of G� and G� over the whole
range of frequencies. Data at low and high frequencies, leading
to values of G� close to the base line (noise level), were
excluded. This baseline, determined as a function of angular
speed for deformations of 0.10 and 0.50 using the Newtonian
fluids N85 and N91 and deionized water, represents the sen-
sitivity of the rheometer and can be used to estimate the
experimental uncertainty in G� for the viscoelastic fluids.

The relaxation spectra will be useful later to quantify the

Figure 4. Material parameters in steady and dynamic
shear flow for the PAA300 fluid.
(a) Open symbols for shear viscosity and first normal stress
difference coefficient; solid symbols for G� and ��; (b) com-
parison between G� and G� data (symbols) and fitting by
three-mode Oldroyd-B model (solid lines).

Table 3. Linear Viscoelastic Spectra for Boger Fluids at
Reference Temperature (T0 � 293.15 K)

Mode k �k (s)

�k (Pa � s)

PAA100 PAA300

1 3.0 0.075 0.23
2 0.3 0.027 0.090
3 0.03 0.018 0.048
Solvent — 0.367 0.367
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Deborah number and for future numerical simulations of this
flow. The Deborah number is used here to quantify elastic
effects and is defined identically to the Weissenberg number
reported in other works in the literature, based on downstream
quantities.

Flow Visualization Results

Newtonian fluids
Flow visualizations were carried out first with the Newtonian

fluids to assess the effect of inertia on the flow structure and to
serve as a reference for comparison against the results for the
elastic Boger fluids. For the 2-D planar and axisymmetric
geometries a fair amount of knowledge has been established on
the behavior of Newtonian fluids,10 although such information
is missing for square–square contractions.

Figure 5 shows photographs of stream traces of the flow of
the Newtonian fluids in the middle plane of the 3-D sudden
contraction and Figure 6 plots the variation of the normalized
vortex length (xR/2H1) with Reynolds number, here defined as

Re2 �
2	H2U2

�
(5)

where H2 and U2 designate the downstream duct half-width and
bulk velocity, respectively.

As expected, inertia leads to a reduction of the corner vortex,
especially noticeable for Reynolds numbers � 1. At low Reyn-
olds numbers, inertial effects are negligible and xR/2H1 asymp-
totes to 0.163. It is interesting to note that, under creeping flow
conditions, the vortex size for a 4:1 circular contraction asymp-
totes to exactly the same value, xR/2H1 3 0.163, whereas for
a 4:1 2-D planar contraction the size is somewhat different,
xR/2H1 3 0.1875 (values based on numerical simulations; see
Alves et al.30,35). For the circular contraction, Boger10 quotes a
value of xR/(2H1) � 0.17 
 0.01 based on both experiments
and numerical predictions, in close agreement with our simu-
lations.

For Newtonian fluids, all the experimental flow features are
well captured by numerical simulations, shown on the right
column of Figure 5; in addition, the predicted variation of the
vortex length with the Reynolds number, shown by the curve in
Figure 6, quantitatively matches the measured data. These
numerical simulations were obtained with a finite-volume
methodology developed by the authors.36

Figure 5 also highlights the point that, even though at first
sight the flow inside the vortex looks 2-D, in reality it is 3-D.
In contrast with the planar and axisymmetric sudden contrac-
tion flows, none of the recirculations is ever closed in the
square contraction, as revealed by a careful inspection of the
streaklines. This was also confirmed by visual inspection and
especially by the numerical calculations from which the flow
description sketched in Figure 7 was outlined. Figure 7 shows
streaklines from fluid particles starting at two different planes
in the upstream duct: the middle plane perpendicular to the wall
(ABCD), always seen in the photos, and the second plane
(EFGH) at 45° to the wall passing through opposite corners of
the square cross section (hereafter referred to as corner plane).

Figure 5. Experimental (left column) and numerical (right
column) streaklines for the flow of Newtonian
fluids N85 and N91 in the middle plane of a
square–square sudden contraction at T �
18.0 � 0.2°C.

Figure 6. Influence of the Reynolds number on the vor-
tex length at the middle plane of a square–
square sudden contraction for Newtonian flu-
ids N85 and N91.
Comparison between experiments and numerical predictions.
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Particles flowing near the walls along the corner plane enter the
corner-plane vortex, rotate toward its center, and then drift
toward the middle plane along the eye of the recirculating
region, in this way entering the vortex located at the middle
plane. Once here the particles now rotate toward the periphery
of the middle-plane vortex and exit the vortex at the reentrant
corner going into the downstream duct.

Open 3-D recirculations were also predicted by other authors
who simulated Newtonian flows in 3-D sudden expansions37,38

(quasi-2-D as the expansion took place in one dimension only)
and in 3-D (quasi-2-D) backward-facing steps.39,40 The inho-
mogeneous flow conditions experienced by fluid particles com-
ing either along the upstream square–duct walls or along its
corners, into the contraction plane region, result in different
velocity gradients, thus leading to stress gradients and complex
secondary flows.

Boger fluids

To quantify the strength of elastic effects with Boger fluids
it is convenient to use a single relaxation time in the definition
of the Deborah number, which can be either based on upstream
(De1) or downstream flow conditions (De2). Most studies of
contraction flows define the Deborah number with a deforma-
tion rate characteristic of downstream flow conditions (leading
to De2). Alves et al.41 showed that lip vortex activity (when
present) scales with De2, independently of the contraction ratio
(�), whereas dimensionless corner vortex size (xR/2H1) and
intensity depend on De2/�. Thus, hereafter the results are
presented with Deborah number based on downstream quanti-
ties, De2. Nevertheless, conversion between upstream and
downstream Reynolds and Deborah numbers is straightfor-
ward: Re2 � 4Re1; De2 � 64De1.

The downstream Deborah number is defined as

De2 �
�p�T�U2

H2
�

aT�p�T0�U2

H2
(6)

where �p is an equivalent relaxation time based on the Old-
royd-B model, and calculated from the linear viscoelastic spec-
tra using the following equations

�p � �
k�solvent

�k (7)

�p �
1

�p
�

k�solvent

�k�k (8)

In this way, it is guaranteed that at low deformation rates
(and low angular velocities), the viscoelastic behavior of the
equivalent single mode Oldroyd-B model is identical to that of
the multimode model (say, �1,0 � lim�̇30 �1 � ¥k 2�k�k �
2�p�p). This definition of relaxation time considers only the
role of the polymer additive in the absence of solvent to
establish the elasticity of the fluid, but it should be noted that
some authors prefer to define a Maxwell relaxation time as �0

� �1,0/2�0.
Thus, from the data in Table 3 the parameters of the equiv-

alent single-mode Oldroyd-B model are the following: for the
PAA100, �0 � �s � �p � 0.487 Pa�s, resulting in a solvent
viscosity ratio �s/�0 � 0.754, and a relaxation time �p � 1.947
s; for the PAA300, �0 � �s � �p � 0.735 Pa�s, �s/�0 � 0.499,
and �p � 1.952 s. Clearly, with the relaxation time defined as
in Eq. 8 we have almost the same relaxation time for both
Boger fluids. Because these two polymer solutions are dilute,
the configurations/behavior of the individual polymer mole-
cules in the same solvent should not differ significantly, and so
the relaxation times of the molecules should be similar. How-
ever, a higher polymer concentration leads to higher “elastic-
ity” because the fluid becomes more viscous and the polymer
molecules take longer to relax. This can be quantified in two
alternative ways, either by using the total viscosity of the fluid
to calculate the Maxwell relaxation time, as mentioned above
(leading to �0 � 0.480 and 0.977 s for PAA100 and PAA300,
respectively), or by using the so-called elasticity number (El2),
defined by the ratio of the Deborah and Reynolds numbers

El2 �
De2

Re2
�

�p�0

2	H2
2 (9)

which is independent of flow kinematics and takes into account
the viscosity of the solution: El2 � 42.2 and 63.9 for the
PAA100 and PAA300, respectively. This results in the
PAA300 fluid being 1.52 times more elastic than PAA100. We
note, however, that if the elasticity number is defined as El �
�p�p/2	H2

2 (��1,0/4	H2
2), to be consistent with the definition

of �p, then the PAA300 fluid is approximately three times more
“elastic” than PAA100 (in agreement with the ratio between
the zero shear rate values of the first normal stress coefficient
measured for both fluids), a figure more in line with the
increase in polymer concentration. In any case, whatever the
definition adopted to measure “elasticity,” the solution of
PAA300 is more elastic than that of PAA100 and this effect
explains the different flow behaviors reported hereafter.

Streak photographies at the middle plane of the contraction
are presented in Figure 8 for the flow of the PAA100 fluid for
increasing values of the flow rate. The flow characteristics are

Figure 7. 3-D particle trajectories for a Newtonian fluid
under conditions of negligible inertia.
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complex, but are caused only by elastic effects because inertia
is not significant (Re2 � 0.95). At relatively low values of the
Deborah number (De2 � 2.65), viscous effects predominate
and the flow pattern is similar to that seen in Figure 5 for
Newtonian fluids, with a concave separation streakline and the
3-D nature of the recirculating flow in evidence. With increas-
ing Deborah number changes progressively occur: first, there is
a very slight increase in vortex size while the separation streak-
line straightens; then, the corner vortex progressively decreases
in size to about a quarter at De2 � 15, an effect that cannot be
attributed to inertia because the Reynolds number remains well
below Re2 � 1. McKinley et al.8 reported results in the 4:1
axisymmetric contraction bearing some resemblance with
these: negligible elastic effects for De2(�̇) � 1 (using a shear-
rate-dependent Maxwell relaxation time) and a decrease in the
corner vortex size for Deborah numbers up to De2(�̇) � 3.
However, in contrast to McKinley et al. for the axisymmetric
contraction, the formation of a strong lip vortex while the
corner vortex decreases in size is not seen in the present
experiments, although the higher curvature of the streaklines at
the reentrant corner suggests the possibility that a weak lip

vortex does exist (see photo for De2 � 13.4). In fact, the
decrease of xR at low De2 is compatible with the existence of a
lip vortex,19 although it has been observed that xR usually
grows monotonically when such a lip vortex is absent. In
addition, the fluids used in those references were clearly more
elastic than here: in McKinley et al.8 the elasticity number is
evaluated as El2 � 610 and in Rothstein and McKinley12 as El2
� 2100.

As the Deborah number further increases the corner vortex
starts to grow, and simultaneously there are changes in the
characteristics of the streamlines approaching the contraction
plane. For De2 
 24.1, the approach flow streaklines in the
middle plane and close to the contraction are seen to progres-
sively diverge with flow elasticity, moving away from the
centerline. This anomalous effect had already been predicted
by Oliveira and Pinho42,43 and Alves et al.18 for the flow of
Boger fluids in a 4:1 plane sudden contraction and was also
observed in the experiments of McKinley et al.8 for the flow of
a Boger fluid in circular contractions. Attempts to explain the
causes for divergence of streamlines upstream of the contrac-
tion for Boger fluids have pointed to a local intense increase in
extensional viscosity leading to an increased flow resistance in
the centerline just upstream of the contraction plane as the
extension rates grow in a region of predominantly extensional
flow characteristics. Such extensional thickening is a char-
acteristic of Boger fluids, but there are not enough data to
correlate rheological behavior with diverging flow. McKinley
et al.8 discuss this issue and mention different degrees of flow
divergence for fluids with similar extensional viscosity behav-
ior, arguing for the relevance of the total Hencky strain to this

Figure 8. Influence of elasticity on the streakline flow
patterns at the middle plane of a 4:1 square–
square sudden contraction for PAA100 at T �
18.1 � 0.2°C.
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flow feature. However, the total Hencky strain is here un-
changed because it is a function of the contraction ratio. Also
of note here, the diverging streamlines with Boger fluids were
observed in the absence of noticeable lip vortex activity. This
contrasts with the visualizations of McKinley et al.8 in the
axisymmetric geometry, but agrees with their conclusions that
diverging streamlines and lip vortex formation are probably
unrelated.

As discussed more recently by Rothstein and McKinley,12

extensional viscosity alone does not explain the variety of flow
features in contraction flows; hysteresis effects on the stress-
conformation, normal stress effects in shear and extension, as
well as contraction ratio and transient extensional viscosity
behavior are relevant to the existence or not of a lip vortex and
to the enhanced pressure drop, so the issue of diverging stream-
lines should be at least as complex. In fact, the early experi-
ments of Cable and Boger4-6 had already shown strong diverg-
ing flow in the presence of combined shear-thinning and
inertial effects, suggesting that inhomogeneous shear condi-
tions near the wall are equally important. Quite interestingly, in
the experiments of Walters and Rawlinson24 in a 13.3:1 squar-
e–square contraction, there is an abrupt expansion of the cen-
tral jet as the fluid is just about to enter the smaller duct (cf.
their Figure 5 at W � 0.002), but there is already an enhanced
vortex and the diverging streamlines may be related in part to
the fluid particles being dragged into the recirculation, some-
thing that we did not observe in our experiments.

The growth of the large vortex continues with elasticity, and
the flow remains steady up to De2 � 52. At higher Deborah
numbers, the 3-D nature of the recirculating flow seems to have
changed, as can be assessed by careful comparison of streak-
lines in the recirculation at De2 � 50.4 with those taken at low
Deborah numbers. As the Deborah number further increases
the flow becomes periodic, possibly because of an elastic
instability, and this is observed by the crossings in some
streaklines at De2 � 54.2. The amplitude of the oscillations
increases with De2, as seen in the three photos of Figure 9 taken
at three moments in time within a cycle for two different
supercritical flow conditions. At even higher flow rates the flow
loses its periodicity.

For the more concentrated Boger fluid, PAA300, the streak-
line flow visualizations are shown in Figures 10a and 10b for
conditions corresponding to two different temperatures, T �
21.0 and 17.5°C. The second set was taken 3 months after the
first, with the same fluid sample (it was stored in a refrigerator),
and with the purpose of checking the repeatability of the flow
and absence of fluid degradation over time under the tested
conditions. In general terms, the influence of Deborah number
is the same as for PAA100, but a couple of important differ-
ences are worth mentioning. First, the increase of the corner
vortex located on the axial midplane at low Deborah numbers
is also observed, but it is now more intense than that with the
PAA100 fluid. This is clear in Figure 11, which compares the
variation for both fluids of the vortex size in the midplane
against the Deborah number (De2): for PAA300 xR/2H1 peaks
by more than 25% relative to the Newtonian value at De2 � 6,
followed by a decrease to about 0.07 in the range De2 � 6 to
15. A second more important difference in relation to PAA100
is that a lip vortex is now clearly seen in the midplane for a
certain range of Deborah numbers (see photos at De2 � 8.70
and 9.62 in Figure 10). In particular, at De2 � 9.62 when

inertia is still negligible, the lip vortex has similarities to that
found for Boger fluids in the 4:1 plane contraction calculations
of Alves et al.18 (cf. their Figure 7 at De2 � 4 for UCM fluids).

It is known from experimental and numerical work in the 4:1
plane sudden contraction flow with Boger fluids,23,44 that a lip
vortex is formed at low to moderate Deborah numbers. This lip
vortex grows with elasticity and eventually dominates the
corner vortex, the characteristic flow feature of Newtonian
flows and low-Deborah number viscoelastic flows. In contrast,
for the axisymmetric sudden contraction flow of Boger fluids
the corner vortex is normally found to grow with elasticity
without the presence of any lip vortex35,45; there are exceptions
to this Boger fluid behavior, as in the experiments of Boger et
al.9 and McKinley et al.8 with PIB/PB solutions. Boger and
Binnington46 also observed a lip vortex mechanism for a PAA-
based fluid in a 4:1 circular contraction with rounded corners,
in deep contrast with the (usual) strong corner vortex enhance-
ment observed in the same 4:1 circular contraction, but with a
sharp reentrant corner. Rothstein and McKinley12 argued about
the competing roles of extensional stresses and shear-induced
normal stresses on vortex growth mechanisms, and concluded
that lip vortices are associated with a domination of shear-

Figure 9. Streaklines for the flow of PAA100 in the mid-
dle plane of a square–square contraction at
three different moments within two different
oscillating supercritical flow conditions.
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induced elasticity, whereas corner vortex growth is dominated
by extensional stresses, thus predominating at large contraction
ratios and/or large Deborah numbers.

Given the similarities between the square–square contraction
and the axisymmetric geometry in terms of both extensional
strain rates developed along the centerline and the possibility of
partial balance of cross-stream/azimuthal pressure and stress
gradients, it comes as no surprise that the visualizations of
Evans and Walters16 for a square–square 16:1 contraction do
not show any lip vortex and instead illustrate a strong enhance-
ment of the middle plane corner vortex (see their Figure 11).
The presence of cross-stream secondary flows in the square
contraction increases shear-induced normal stresses relative to
those found in the corresponding circular contraction flow and,
according to the above mechanism of Rothstein and McKinley,
this will widen the range of contraction ratios where the lip

Figure 10. Influence of elasticity on the streakline flow
patterns at the middle plane of a 4:1 square–
square sudden contraction for PAA300.
(a) Visualizations at 21.0°C; (b) visualizations at 17.5°C.
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vortex is observed. Such an effect is similar to rounding the
reentrant corner in axisymmetric contractions: Rothstein and
McKinley12 report for this case the existence of a lip vortex for
the 4:1 contraction and a delay in corner vortex development,
confirming the observations of Boger and Binnington.46

At higher flow rates/elasticity (De2 � 20) there is vortex
enhancement through a lip vortex mechanism. A diverging
streakline pattern upstream of the contraction plane is also
observed, but now in the presence of a lip vortex. The appear-
ance of diverging streaklines in a 3-D square–square contrac-
tion flow of Boger fluids, with and without lip vortex, is
documented here for the first time and confirms the suggestion
of McKinley et al.8 that the two phenomena are probably
unrelated. Simulations by Oliveira and Pinho42 for creeping
flow of UCM fluid in a 4:1 planar contraction corroborate this
point, and the numerical results presented in Oliveira and
Pinho43 for the same flow under conditions where inertia is not
negligible (Re2 � 1) illustrate that inertial effects enhance
streamline divergence for high Deborah number flows.

At even higher Deborah numbers, say for De2 
 46.7 (De1


 0.726), the flow of PAA300 becomes periodic, showing a
behavior similar to that reported above for the PAA100 fluid.
This periodic flow results from an elastic instability and occurs
earlier than for the PAA100 solution, at De2 � 45 (De1 � 0.7).
Figure 12 shows three photos with the PAA300 solution per-
taining to a cycle of events for two different supercritical flow

Figure 11. Variation of normalized vortex length with
flow elasticity for Boger fluids PAA100 and
PAA300.

Figure 12. Streaklines for the flow of PAA300 in the mid-
dle plane of a square–square contraction at
three different moments within oscillating su-
percritical flow conditions.
(a) De2 � 55.1 and Re2 � 0.577; (b) De2 � 61.5 and Re2 �
0.643.
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conditions, confirming that the time-average size of the time-
dependent vortex continues to grow with Deborah number.

Conclusions

Flow visualizations were carried out in the middle plane of
a 4:1 square–square sudden contraction for Newtonian and
Boger fluids under conditions of negligible inertia, using
streakline photography. The Newtonian flow patterns were in
good agreement with our own numerical results and show
inertia to be negligible for Reynolds numbers below Re2 � 1.
The flow field was clearly three-dimensional, exhibiting open
vortices with both Newtonian and viscoelastic fluids, and in-
ertia tended to push the corner vortex toward the contraction
plane.

For the two Boger fluids the upstream vortices were seen to
increase slightly at low Deborah numbers, before an intense
decrease took place leading to a minimum vortex size at De2 �
15. As the Deborah number further increased, the streaklines
on the central region of the approaching flow started to diverge,
whereas the vortices grew strongly with elasticity until the flow
became periodic and eventually chaotic at higher flow rates.

For the more concentrated Boger fluid (PAA300) these ef-
fects were more intense because of the corresponding higher
elasticity number, and a major difference in flow features was
clearly seen: after the vortex attained its minimum size at
intermediate Deborah numbers, 10 � De2 � 15, a lip vortex
appeared and grew with elasticity. For the PAA100 solution,
and although only corner vortex enhancement was observed,
the variation of vortex size with Deborah number was compat-
ible with the existence of a weak lip vortex (not captured with
our visualization technique).

We speculate that the secondary flow in the cross section of
the rectangular channel tends to increase the role of shear-
induced normal stresses, thus leading to the appearance of a lip
vortex at this contraction ratio and consequently delaying the
vortex growth and instability to higher Deborah numbers, com-
pared to the corresponding situation of a circular contraction.
Such flow features, and the existence of a diverging flow well
upstream of the contraction, are reported here for the first time
in relation to the square–square contraction flow of Boger
fluids. However, similar flow features have been previously
reported for circular contractions.
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