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Abstract

The paper presents very accurate numerical results for the vortex size, the vortex intensity and the Couette
correction, in planar contraction flows of Oldroyd-B and PTT fluids (ε = 0.25) with both the linear and the
exponential stress function, and with a solvent viscosity ratio equal to 1/9. The accuracy of these results is quantified,
being generally below 1% (0.3% for most results), and the finest mesh employed had over 1 million degrees of
freedom. Such degree of mesh fineness is shown to be required for accurate results with the Oldroyd-B fluid,
especially at high Deborah numbers, but the shear-thinning PTT fluid in general does not require the finest meshes.
In terms of level of elasticity, steady results for the PTT fluid could be obtained for values of the Deborah number
in excess of 100 (linear PTT) and 10,000 (exponential PTT).
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In computational rheology there are a number of flow problems often used as test cases for the de-
velopment of new numerical methods and assessment of their accuracy. Examples are the viscoelastic
flow through axisymmetric and planar contractions, flow around cylinders or spheres, either confined or
unconfined, flow through corrugated channels, stick-slip flows, and some others (cf.[1,2]). While for
some of these test cases quantitative results are either tabulated or given under the form of graphs from
where data can be extracted and used for comparison by other researchers, for other cases such data have
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never been provided quantitatively and comparison can be qualitative at best. Example of the former
situation is the drag coefficient for low Reynolds number flow around either spheres (see a comparison
of various results in[2]) or cylinders (excellent agreement between[3] and[4]), all given by numerical
investigations; those data are then used to demonstrate that different methods yield results in close agree-
ment, hence imparting confidence on the solutions and the methods. For other problems, typified here by
planar contraction flows, such quantitative data are either missing or have only recently been provided
[5–8], but still without a clear indication of the expected range of validity[5,7,8]. It is true that the flow
through abrupt contractions gives rise to a singularity at the re-entrant corner located at the entrance to
the smaller duct, where stresses tend to infinity thus posing severe difficulties to the numerical methods
and the pursue of accurate solutions.

It is the purpose of the present work to provide quantitative data of benchmark quality for the iner-
tialess flow through a 4:1 planar contraction of viscoelastic liquids obeying either the constant viscosity
Oldroyd-B constitutive model, or the shear-thinning PTT model with linear or exponential stress func-
tions. The data given comprises the size of the corner vortex formed upstream of the contraction, its
intensity in terms of entrapped flow rate, the pressure drop through the contraction, longitudinal profiles
of velocity and normal stress along the centreline, and asymptotic variation of velocity and stresses near
the singular re-entrant corner. The accuracy of these global data is assessed in a precise manner, by com-
parison with extrapolated values therefore providing a quantitative error estimate, and in a less precise
manner by comparison between predictions on various computational meshes. A finite-volume numerical
method was used to obtain these results and the accuracy of the different schemes utilised to represent
the spatial derivatives in the governing equations is demonstrated to be second order at least. Consistent
mesh refinement has been carried out on six consecutively refined meshes, the finest of which has over 1
million degrees of freedom. The computational code employed here is essentially the same of[4], where
excellent agreement has been demonstrated with the independent predictions of[3] for the viscoelastic
flow around a confined cylinder.

Of the two types of sudden contraction flow geometries, the one that has received more attention,
both numerically and experimentally, is the axisymmetric configuration. The planar configuration, on
the other hand, is better suited to visualisation studies through birefringence strand techniques, as in the
works[9–11], and is equally relevant to engineering flows in extrusion dies. In a previous paper[12], we
have reviewed the published numerical work on planar contraction flows and have provided numerical
solutions based on the upwind scheme but using very refined meshes. Later[6], we published accurate
results for the case of the flow of an upper convected Maxwell (UCM) fluid, giving special attention to
issues of accuracy and mesh refinement, particularly to the effects brought about by improved numerical
spatial discretisations in contrast to plain upwind differencing. Amongst the more recent computational
work we emphasise that of Aboubacar and Webster[7] and Aboubacar et al.[8] who have done a very
comprehensive study of Oldroyd-B and PTT fluids flowing through sharp and rounded-corner planar
contractions, having highlighted the influence of the fluids Trouton ratio on the vortex patterns. Although
the conclusions of these authors regarding flow behaviour in planar contractions are indisputably correct,
as we shall show their data still lack the degree of accuracy required for benchmark data and that is the
gap we would like to fulfil with this work.

To illustrate from the outset the level of scatter of the numerical data from the literature for this
problem, we plot inFig. 1(a)existing data for the size of the recirculating corner vortex (XR, normalised
with half-width of smaller channel) and inFig. 1(b)predictions of the vortex intensity (Ψ R, normalised
with inlet flow rate). Both these quantities are plotted as a function of elasticity level, measured by a
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Fig. 1. Present status in published values for the corner vortex characteristics with the Oldroyd-B fluid in a 4:1 planar contraction:
(a) size; (b) intensity.

Deborah numberDe = λU2/H2, and pertain to the Oldroyd-B fluid. There is clearly too much dispersion
in these results and trends in data are not even consistent. Obviously, some degree of convergence, in
terms of accuracy, is required if the planar contraction flow is to remain one of the benchmark problems
in non-Newtonian viscoelastic computations. In these figures, we also show the outcome from the present
study (solid lines), and also some numerical results obtained on a coarse mesh with the upwind scheme
(dashed lines), in order to illustrate the type of disparity between accurate and less accurate solutions.
Further discussion is given inSection 4.
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We believe that the results of the current study will provide a definite answer to some of the discrepancies
seen inFig. 1and they will be very useful for others, as a check of their codes in this relevant problem
of relative geometrical simplicity. We would like to emphasise that even for Newtonian fluids it has been
extremely difficult to find reliable data for the creeping flows of interest here.

In Section 2the governing equations are given and the numerical method described in broad terms.
The geometry and computational meshes are defined inSection 3. The results for the Oldroyd-B, linear
PTT and exponential PTT fluids are given and discussed inSections 4–6, respectively.

2. Governing equations and numerical method

The equations governing the laminar flow of an incompressible viscoelastic fluid are those expressing
conservation of mass:

∇ · u = 0, (1)

and momentum:

ρ

[
∂u

∂t
+ ∇ · uu

]
= −∇p + ηs∇ · ∇u + ∇ · τ , (2)

together with a constitutive relation for the extra, elastic part of the stress tensorτ , here taken as a
differential equation:

λ

[
∂τ

∂t
+ ∇ · uτ

]
+ f (Tr τ )τ = ηp(∇u + ∇uT)+ λ(τ · ∇u + ∇uT · τ ). (3)

The last equation represents a simplified form of the PTT model[13,14]where only the upper convected
part of the full Gordon–Schowalter derivative is retained. The stress functionf (Tr τ ) may follow either
the linear form proposed in the original work[13]:

f (Tr τ ) = 1 + λε

ηp
Tr(τ ), (4)

or the exponential form proposed later by Phan-Thien[14]:

f (Tr τ ) = exp

[
λε

ηp
Tr(τ )

]
. (5)

In Eqs. (2)–(5), the constant model parameters are the relaxation timeλ, the zero-shear polymer viscosity
ηp, the solvent viscosityηs, and the extensibility parameterε. If ε is set to zero, this constitutive model
becomes identical to the Oldroyd-B equation where the ratio between the solvent viscosity and the total
viscosity isβ = ηs/η0, with η0 = ηs + ηp. In the current work,β is taken asβ = 1/9 in accordance with
many previous studies.

A fully-implicit finite-volume method is used to solveEqs. (1)–(3). It is based on a time marching
pressure-correction algorithm formulated with the collocated variable arrangement, as explained in detail
in [15]. The governing equations are integrated in space over the control volumes (cells, with volume
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VP) forming the computational mesh, and in time over a time step (�t), so that sets of linearised algebraic
equations are obtained, having the general form:

aPuP =
6∑

F=1

aFuF + Su, (6)

to be solved for the velocity components, and

aτ
PτP =

6∑
F=1

aτ
F τF + Sτ , (7)

to be solved for the extra stress components. In these equations,aF are coefficients, accounting for
convection and diffusion influences,S are source terms encompassing all contributions not included
in the coefficients, the index P denotes the cell at the centre of the computational molecule andF the
corresponding neighbouring cells. The central coefficient of the momentum equation is given by:

aP = ρVP

�t
+

6∑
F=1

aF , (8)

where the first term arises from the time-dependent term in the original equation and is used here with
the purpose of inertial under-relaxation since the interest is only in steady state solutions. Similarly, the
central coefficient of the stress equation for the linear PTT model is given by:

aτ
P = λVP

δt
+ VP

(
1 + λε

ηp
Tr(τP)

)
+

6∑
F=1

aτ
F , (9)

and for the exponential PTT model it suffices to replace the term in brackets by the exponential stress
function (Eq. (5)). It is important to notice that the effect brought about by the PTT model, compared
with the UCM, is to increase the central coefficient (since Tr(τ ) is always positive and usually large) and
thus promoting numerical stability.

After having assembled the coefficients and source terms, the linear sets ofEq. (6)are sequentially
solved for the two Cartesian velocity componentsu andv, by means of a preconditioned bi-conjugate
gradient solver. These newly computed velocity components will not, in general, satisfy the continuity
equation (Eq. (1)) and need therefore to be corrected by adjustment of the pressure differences which
drive them. This is accomplished by means of a pressure-correction field obtained from a pressure Poisson
equation, derived from the discretised equivalent of (1) and a simplified form of (6), which is then solved
with a symmetric conjugate gradient method. Once we are in possession of a continuity-satisfying velocity
field, we may solve sequentially the implicitly-discretised constitutive equations forτ xx , τ yy andτ xy
(Eq. (7)); the same bi-conjugate solver is employed for this purpose. Note that the source termSu in
(6) depends on the stress field, and the source termSτ in (7) depends on the velocity field; the time
advancement of the equations thus acts as an iterative procedure with the time step playing the role of an
equivalent under-relaxation factor.

Most importantly for accuracy is the representation of the convective terms in the constitutive equations.
The base scheme we consider is an upwind differencing scheme (UDS) in which a cell face stress is given
by the corresponding cell centre value in the upstream direction, and the contribution of those upwind
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fluxes are included in the coefficients. This scheme leads to too much numerical diffusion, a fact known
for a long time in Newtonian CFD and for almost a decade by the non-Newtonian community. Yet,
upwind is still used by some research groups, especially with finite-volume methods, but clearly better
stress convection schemes are required, especially to deal with elastic flow predictions. The constitutive
equations are of the hyperbolic type, without any physical diffusion term, and high order schemes must
be accompanied by high-resolution or TVD type of restrictions in order to dampen the formation of any
numerical oscillations in regions of high gradients. A new convection scheme especially designed for
differential constitutive relations has been proposed in[16] and it is here adopted throughout. It has the
advantage over more classical schemes, like the SMART scheme of Gaskell and Lau[17], of promoting
iterative convergence when employed in conjunction with implicit methods.

3. Geometry and computational meshes

A sketch of the contraction geometry is given inFig. 2. Only half of the two-dimensional domain is used
for the computations, with symmetry conditions imposed at the centreline,y = 0. We are therefore unable
to capture possible flow bifurcations resulting in asymmetric vortical structures. The half-width of the
shorter channelH2 is taken as the characteristic length scale and the average velocity in that channelU2 is
the characteristic velocity scale. Stress and pressure are normalised withη0U2/H2 (often, to be consistent
with previous work, we use the scalingτw,0 ≡ 3η0U2/H2 for the stresses). Due to the very high elasticity
attained in the present calculations, longer inlet and outlet channel lengths have been assumed as base
values, compared with our previous studies[6,12]. Here we took an inlet lengthL1 = 40H2 and an
outlet lengthL2 = 100H2. These lengths are required for complete flow development upstream of the
contraction, and complete flow redevelopment downstream of it; although fully developed flow at inlet
and outlet is not a requirement to obtain precise vortex data, it is a requirement to obtain precise values
of Couette correction (non-dimensional pressure loss). For the highest elastic cases,L2 was even longer
than the base value; this is discussed inSections 5 and 6.

The mesh data inTable 1comprise the total number of control volumes in the meshes (NC), the degrees
of freedom (DOF) and the minimum mesh spacing normalised withH2. Fig. 10, to be discussed later,
gives a zoomed view of a small portion of mesh M6 near the re-entrant corner; as expected, the smallest
cells are clustered around the corner and their size expands very smoothly as one moves away from the
singular point. M6 is an extremely refined mesh, with significant mesh concentration not only around

Fig. 2. Sketch of the contraction geometry.
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Table 1
Major characteristics of the computational meshes

Mesh NC DOF �xmin = �ymin

M1 5282 31692 0.020
M2 10587 63522 0.014
M3 21128 126768 0.010
M4 42348 254088 0.0071
M5 84512 507072 0.0050
M6 169392 1016352 0.0035

NC: number of cells; DOF: degrees of freedom;�x,�y: cell spacing.

the re-entrant corner and downstream channel wall, but also in the upstream wall region where mesh
refinement is useful to resolve accurately the main features of the corner vortex.

A large number of computations have been performed on the meshes defined inTable 1, for increasing
values of the Deborah numberDe ≡ λU2/H2 but for a constant vanishing Reynolds numberRe ≡
ρU2H2/η0 = 0, so as to allow comparison with existing results. For both the Oldroyd-B and PTT
models, the viscosity ratio was kept constant at the often used valueβ = 1/9, and the value assigned
to the extensional parameter of the PTT wasε = 0.25, typical of polymer melts. Furthermore, the two
forms of the PTT model were considered: linear and exponential stress functions.

The results of all these computations may be divided into two classes: qualitative and quantitative. The
qualitative results to be given essentially comprise streamline plots, an effective way of illustrating the
effect of elasticity on vortex enhancement and checking the existence or not of lip vortices. The main
contribution of the work is however the quantitative results, which comprise tables and figures for the
size of the corner vortexXR, intensity of the corner vortexΨ R, intensity of lip vortex (when present)Ψ L,
entry pressure drop expressed as a Couette correction coefficientC ≡ (�p−�pfd)/2τw, and maximum
values of normal stress and axial velocity along the centreline of the channels. In the Couette correction,
τw is the wall shear stress for the fluid in question (encompassing both the solvent and the polymer
contributions) evaluated under fully developed conditions in the smaller channel. The uncertainty of
these data is quantified by means of the Richardson extrapolation technique.

Results are first given for the Oldroyd-B fluid (Section 4), and then for the linear and exponential forms
of the PTT fluid (Sections 5 and 6). When of interest, results for the different fluids are compared.

4. Results for the Oldroyd-B fluid

Results for the vortex size and intensity, and for the pressure drop of the Oldroyd-B fluid withβ = 1/9,
obtained on the three successively refined meshes M2, M4 and M6 generated by halving the mesh space,
are presented inFigs. 3–5and inTable 2. All these quantities are seen to decrease with elasticity, measured
by the Deborah number, up to a level ofDe ≈ 3. Convergence could not be achieved for the higher value
of De on the finest mesh M6 and so it is not possible to answer the question of whether vortex activity
would eventually increase at higher elasticity, as was the case for the UCM predictions in[6,12]. The
“Percent error” inTables 2–4quantify the relative difference between the predictions on the finest mesh
and the extrapolated results obtained from Richardson’s extrapolation technique. They are a measure of
the uncertainty of our results. It is worth noting that the benchmark data given in the tables are our “best”
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Fig. 3. Variation of the vortex sizeXR with the Deborah numberDe for the Oldroyd-B fluid.

(more accurate) results based on Richardson’s extrapolation to the limit. On the first meshes (M1 and
M2) we could attain higherDe-values but the corresponding data are not given in the tables.

For the purpose of comparison with data forXR andΨ R reported in the literature, which were discussed
in Section 1in relation toFig. 1, we have also carried out computations with the low-accuracy upwind
scheme on our coarsest mesh M1. These predictions are plotted inFig. 1(a) and (b), respectively, as dashed
lines; they lie in the middle of the scatter represented by the existing data, implying poor resolution inherent
to most of these.

Fig. 4. Variation of the corner vortex intensityΨ R with the Deborah numberDe for the Oldroyd-B fluid.
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Fig. 5. Variation of the Couette correctionC with the Deborah numberDe for the Oldroyd-B fluid.

It is also pertinent to note that although the Couette correction is not too sensitive to mesh refinement,
the vortex characteristicsXR andΨ R vary in a discernible way amongst the three meshes, especially as
De is increased; atDe = 3 there is a variation of 0.7% inXR and 3.1% inΨ R when going from mesh
M4 to M5. The errors inΨ R seen inTable 2, and in the remaining tables for the PTT fluids, are usually
greater than the errors forXR andC; this is becauseΨ R requires integration of the velocity field, therefore
lowering the convergence rate (see comments in[6], p. 303).

For comparison purposes we include in the above figures the recent data of Aboubacar and Webster
[7], obtained with a hybrid finite-volume/element method on a mesh with a minimum spacing of 0.011 (it
is not clear if this corresponds to our�xmin) and 32,717 DOF. The results of these authors coincide with
ours on our coarse mesh M2, except for the higherDewhere the deviation may be explained by onset of
numerical divergence, and also for the lowerDe = 0.1. WhenDe tends to zero the results should tend to
the Newtonian solution. A recent semi-analytic study of creeping flow by Rogerson and Yeow[18] gave

Table 2
Benchmark results for the Oldroyd-B model withβ = 1/9

De XR Percent error Ψ R × 103 Percent error C Percent error τ xx ,max
a umax

a

0.0 1.5002 0.02 1.178 0.2 0.3741 0.1 0.360 1.501
0.5 1.4520 0.02 1.006 0.6 −0.0360 1.0 0.461 1.511
1.0 1.373 0.1 0.780 2.0 −0.505 0.4 0.544 1.525
1.5 1.279 0.2 0.576 3.0 −0.995 0.4 0.589 1.537
2.0 1.181 0.2 0.422 4.0 −1.492 0.3 0.612 1.546
2.5 1.077 0.3 0.297 6.0 −1.996 0.4 0.623 1.554
3.0b 0.973 0.6 0.207 9.0 −2.501 0.7 0.638 1.562

a Maximum values along centreline, normalised with 3η0U2/H2 andU2.
b Based on the results obtained with meshes M1–M5.
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Table 3
Benchmark results for the linear PTT withε = 0.25

De XR Percent error Ψ R × 103 Percent error C Percent error τ xx ,max
a umax

a

0.0 1.5002 0.02 1.178 0.2 0.3741 0.1 – 1.501
0.1 1.500 0.1 1.178 0.2 0.3092 0.1 0.349 1.495
0.2 1.501 0.1 1.179 0.2 0.2581 0.2 0.368 1.484
0.5 1.506 0.1 1.201 0.1 0.1672 0.2 0.399 1.465
1 1.542 0.1 1.339 0.1 0.0951 0.3 0.415 1.468
2 1.639 0.1 1.781 0.1 0.0261 1.0 0.405 1.484
5 1.898 0.1 3.31 0.5 −0.0551 0.9 0.340 1.512

10 2.131 0.1 4.76 0.7 −0.1113 0.6 0.264 1.531
20 2.321 0.1 5.73 1.0 −0.1460 0.3 0.183 1.542
50 2.493 0.2 6.34 2.0 −0.1444 0.4 0.0920 1.544

100 2.57 0.5 6.48 2.0 −0.0917 1.0 0.0480 1.540

a Maximum values along centreline, normalised with 3η0U2/H2 andU2.

XR ≈ 1.5 which coincide with our result inFig. 3. From private communications with Prof. M.F. Webster,
it is plausible that the deviation at lowDeseen inFigs. 3 and 4(and in the corresponding figures for the
PTT fluids to be shown later) might be caused by insufficient time stepping in the computations of[7,8],
hence leading to a too loose iterative convergence stopping-criterium. This could be expected, since the
time scale for the viscoelastic flow can be taken as proportional to the relaxation time of the fluid, with a
time step chosen accordingly, whereas the time scale for the Newtonian flow is a characteristic diffusion
time ∝ ρH 2

2/η0 which is very small. As a consequence, whenDe → 0 the�t used in the computations
becomes small and many time steps will be required to reach a single unit relaxation time.

Fig. 6demonstrates the quadratic convergence of the present discretisation schemes, viewed as a whole
(for convection, diffusion and sources), even for the large Deborah number case shown (De = 2.5). Values

Table 4
Benchmark results for the exponential PTT withε = 0.25

De XR
a Percent error Ψ R × 103a Percent error Ca Percent error τ xx ,max

b umax
b

0.0 1.5002 0.02 1.178 0.2 0.3741 0.1 – 1.501
0.1 1.499 0.2 1.169 0.5 0.310 0.3 0.349 1.495
0.2 1.499 0.2 1.169 0.4 0.259 0.3 0.367 1.483
0.5 1.518 0.3 1.236 0.2 0.188 0.4 0.393 1.457
1 1.579 0.2 1.513 0.7 0.171 0.6 0.400 1.453
2 1.732 0.3 2.345 1.4 0.201 0.8 0.373 1.461
5 1.988 0.2 3.302 0.8 0.288 0.5 0.285 1.472

10 2.017 0.2 2.162 0.6 0.352 0.3 0.206 1.478
20 1.854 0.1 0.935 0.5 0.388 0.4 0.138 1.484
50 1.579 0.3 0.303 1.0 0.398 0.1 0.0716 1.492

100 1.440 0.4 0.173 0.6 0.401 0.3 0.0415 1.496
1000 1.393 1.2 0.218 0.5 0.387 0.1 0.0071 1.500

10000 1.436 0.1 0.861 0.3 0.376 0.2 0.0011 1.501

a Based on the results obtained with meshes M2 and M4.
b Maximum values along centreline, normalised with 3η0U2/H2 andU2.
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Fig. 6. Convergence of predicted vortex size (symbols) with mesh refinement for the Oldroyd-B fluid atDe = 2.5.

of vortex size predicted on each mesh (M1–M6) are shown by the circles as a function of the minimum
mesh spacing�xmin, and the line represents a curve-fitting through the finest mesh values (M2–M6). It
may be observed that the asymptotic range for theXR variation is clearly achieved with the high degree
of mesh refinement here applied, and the exponent of the mesh-size measure indicates the second-order
accuracy expected from combination of a formally third-order scheme for the convection terms with a
second-order scheme for the diffusion terms and the remaining approximations used in the discretisation.

In Fig. 7the streamlines for the Oldroyd-B fluid, computed on the finest mesh M6, are presented. These
show, qualitatively, shrinkage of the corner vortex with raising elasticity and the appearance of a small
lip vortex at aroundDe ≈ 1. Although minute, the lip vortex is not an artifact of the computations: it is
shown inFig. 8that its intensity is finite with extrapolation to a zero mesh size (recall that our mesh is very
refined in the region around the re-entrant corner). FromFig. 8 it is also clear that, while forDe = 0.5
and 1 the lip vortex vanishes when the grid resolution is infinitely increased, forDe = 1.5 a finite lip
vortex intensity remains when�x → 0. Such behaviour is more clearly shown inFig. 9(a), where lip
vortex streamlines are plotted over an enlarged local view of the various meshes, and inFig. 9(b)where
the asymptotic variation of lip vortex size and intensity with mesh fineness indicates finite values for zero
mesh size. Note the linear convergence of the lip vortex characteristics, in contrast to the general quadratic
convergence rate of the scheme; this is the best it can be achieved with such a small and localised flow
feature as the lip vortex. Similar, but stronger, lip vortices were present in our previous simulations with
the upper convected Maxwell model[6,12].

A view of the various stress component fields (τ xx , τ yy , τ xy) and the pressure field in the entrance
region is provided inFig. 10. These predictions were obtained on the finest mesh M6 and correspond
to the highest Deborah number achieved,De = 2.5. All fields are smooth, with highly localised stress
concentration at the walls adjacent to the re-entrant corner. A more quantitative view of the local velocity
and stress variations can be gained from asymptotic type of plots, which also serve to check some of
the existing theories. These kinds of plots show radial profiles under log–log scales, emanating from
re-entrant corner (distancer), at given anglesθ measured anticlockwise from the incoming flow direction
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Fig. 7. Flow patterns with the Oldroyd-B fluid (mesh M6). Note:�ΨR = 0.1 × 10−3 in recirculation.

Fig. 8. Convergence with mesh refinement of the lip vortex intensity, for the Oldroyd-B fluid at Deborah numbers of 0.5, 1.0 and
1.5. Symbols are the predictions and lines the curve-fittings.
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Fig. 9. Lip vortex for the Oldroyd-B fluid atDe = 1.5. (a) Local view of streamlines and mesh. Note: in recirculation,
�ΨL = 0.05× 10−3. (b) Variation of lip vortex size and strength with mesh refinement.
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Fig. 10. Detail of the stress and pressure fields in a small region around the re-entrant corner, for the Oldroyd-B fluid atDe = 2.5. Predictions on the finest mesh
M6 (also shown).
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Fig. 11. Asymptotic variation near the re-entrant corner of (a) velocity and (b) stress components along a line atθ = 90◦ (i.e.
x = 0), for the Oldroyd-B fluid atDe = 1.

(seeFig. 2). The most convenient angle isθ = 90◦ which corresponds to profiles across the flow, along
the Cartesian co-ordinatey, atx = 0; Fig. 11shows such profiles on various meshes for the Oldroyd-B
fluid at De = 1. This value ofDe was chosen to avoid the formation of a lip vortex which would
violate the assumptions of the asymptotic theories (e.g.[19]). The predictions shown inFig. 11reveal
good convergence when the computational meshes are refined, with the longitudinal and transversal
velocity components going to zero near the corner asr5/9 and r3/4, respectively, and all three stress
components going to infinity asr−2/3; these slopes agree with the theory of Hinch[19]. Further study
of the asymptotic behaviour of the UCM fluid (which essentially follows the Oldroyd-B behaviour) was
given in a previous work[20], where both the Deborah number and the angle of the radial line were
varied.
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Fig. 12. Comparison of asymptotic variation forθ = 90◦ (entrance to small channel,x = 0) andθ = 170◦ (almost over
downstream wall,y/H2

∼= 1). Oldroyd-B fluid atDe = 1 on mesh M6: (a)u-velocity component; (b)τ xx stress component.

It is interesting here to compare the asymptotic variation along theθ = 90◦ line with that atθ = 170◦,
a line almost coincident with the downstream channel wall. This is done inFig. 12and, although the
perturbation near the singular point is higher forθ = 170◦ than forθ = 90◦, the slopes of the “radial”
variation still seem to be+5/9 for theu-velocity and−2/3 for theτ xx stress. Note that stress values
exactly on theθ = 180◦ line, that is over the downstream channel wall, are not actually calculated in our
code but are only evaluated internally as boundary conditions to be applied to the momentum equations.
In the next section, for the PTT fluid with the linear stress function, the behaviour close to the corner is
studied in more detail.

Finally, we note that the Couette correction for the Oldroyd-B fluid decays linearly withDe, as seen in
Fig. 5, going to negative values in line with previous findings for the UCM; indeed, it would be unexpected
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that a small amount of solvent viscosity would change the gross features of this flow. This linear variation
can be accurately predicted with the correlation:

C = a − bDe, (10)

wherea = 0.4987 andb = 0.9983 forDe ≥ 1 (regression factor ofR2 = 0.99996); for lowerDe the
variation deviates slightly from a straight line but a good fit for allDe is still obtained witha = 0.4281
andb = 0.9665 (R2 = 0.9991). Pressure recovery at high elasticity can be attributed to the lack of
dissipative effects in the Oldroyd-B model, but it is contrary to experimental observations. We may
therefore conclude that both the UCM and Oldroyd-B equations are inadequate to model pressure drop
through planar contractions, being unable to predict a localised (positive) loss coefficient. It is also true
that experimentalists are at pain to measure accurate values for the loss coefficient, as illustrated by the
recent work of Nigen and Walters[21], to which we shall come later when discussing pressure losses for
the PTT model.

5. Results for the linear PTT fluid

This model is shear thinning on both the shear viscosity and the first normal stress difference coefficient.
In addition, the elongational viscosity is limited, reaching a plateau at high strain rates, and the maximum
value of the elongational viscosity varies inversely with the parameterε. The first set of results to be
presented corresponds toε = 0.25, a typical value for the flow of concentrated polymer solutions and/or
also for polymer melt flows.

Contrary to the Oldroyd-B fluid, both the size and intensity of the corner vortex for the linear PTT
fluid are seen inFigs. 13 and 14to increase monotonically with the Deborah number. Also, there is less
sensitivity to mesh fineness, except possibly at highDe, but not as noticeable as for the Oldroyd-B fluid.
For purposes of benchmarking, all our results are tabulated inTable 3with quantified uncertainties. For
comparison, the data of Aboubacar et al.[8] are plotted in these figures; there is fair agreement, except
for some erratic points. Notice also that the vortex recirculation tends to level out at high elasticity and so

Fig. 13. Variation of the vortex sizeXR with the Deborah numberDe (log scale) for the linear PTT fluid withε = 0.25.
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Fig. 14. Variation of the corner vortex intensityΨ R with the Deborah numberDe (log scale) for the linear PTT fluid with
ε = 0.25.

the linear PTT model is not able to predict the very large corner vortices observed in some experimental
visualisation works (see[21] and references therein).

The Couette correction results are given inFig. 15and the streamlines predicted on mesh M6 inFig. 16.
There is no sign of lip vortices for any of theDe we have tried. The Couette correctionC goes through
a minimum, having a slightly negative value (elastic recovery), and is generally higher than that for the
Oldroyd-B fluid, as shown under a linearDescaling inFig. 17. A question arises: is the linear PTT model
adequate to represent real fluid behaviour, namely in terms of entry losses? Possibly not, but the recent
measurements of Nigen and Walters[21] for the planar contraction case are not conclusive. Looking at their
Fig. 13 (syrup 2 and Boger fluid 2) we see a small pressure recovery which can be quantified asC = −1.37

Fig. 15. Variation of the Couette correctionC with the Deborah numberDe (log scale) for the linear PTT fluid withε = 0.25.
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Fig. 16. Flow patterns with the linear PTT fluid (ε = 0.25, mesh M6). Note: in recirculation�ΨR = 0.2 × 10−3 for De ≤ 2;
�ΨR = 0.5 × 10−3 for De ≥ 5.

forQ = 40 g/s. However, most probably this and other values ofC, evaluated on the basis of the data mea-
sured by Nigen and Walters, are negative due to experimental uncertainties because their measurements
for an axisymmetric contraction with a shorter outlet pipe clearly indicate a pressure loss (C > 0).

By employing a high degree of grid refinement in the region around the singular re-entrant corner we
were able to study the asymptotic local variation of stresses and velocity, at distances increasingly closer
to the corner (located atx/H2 = 0 andy/H2 = 1). The resulting variations along the radial line at an
angle of 90◦ to the main flow direction are shown under log–log scales inFig. 18, for the caseDe = 1.
They follow power laws and are relatively smooth, with the velocity going to zero at a rate of 5/9, while
the stresses go to infinity at a rate of−0.329. Such slopes for the asymptotic behaviour of the stress and
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Fig. 17. Comparison of the predicted Couette correction for the Oldroyd-B and the PTT models.

velocity components near the corner closely match the theoretical derivation of Renardy[22] for the PTT
fluid, and the local predicted variation is certainly more consistent than that in the recent results of Tanner
et al.[23].

As done in the previous section for the Oldroyd-B fluid, it is interesting to compare here the asymptotic
behaviour along two radial directions (Fig. 19, mesh M6):θ = 90◦ (across the small channel entry,
that is Cartesian direction atx = 0) andθ = 170◦ (line almost over the small channel wall, that is
y ≈ 1). The predictions shown are for the caseDe = 1, andFig. 19clearly demonstrates that the rate
of variation (measured by the slope of the straight lines passing through the data) remains the same for
the two directions. For the profile along the lineθ = 170◦, it is, however, visible that the magnitude of
the stressτ xx is somewhat reduced in a few points very close to the singularity. In order to understand
the stress behaviour near the singularity, we show inFig. 20(a)axial profiles of the predictedτ xx on the
various meshes along the first row of cells adjacent to the downstream channel wall. With our cell-centred
finite-volume scheme the values ofτ xx on the wall itself are not explicitly computed (in fact, they are not
needed), and so it makes sense to use the closest available stresses which are directly computed on points
internal to the computational domain.

There is good convergence with mesh refinement, except near the point of maximumτ xx stress, which
we shall denote asτ xx,max andx(τ xx,max). Such a situation would be expected, since the more refined
the mesh is, the higher stresses it will resolve near the singularity (x = 0, y = 1 under non-dimensional
form); therefore, some localised region where convergence cannot be achieved will always exist. An
asymptotic analysis of the variation of the maximum stress value and its location, as obtained on the
various meshes, can provide us with valuable information.Fig. 20(b)shows howτ xx,max and the axial
location where it occursx(τ xx,max) vary with the distance to the wall. These results demonstrate that
x(τ xx,max) converges linearly to the singular point (x/H2 = 0, y/H2 = 1; the re-entrant corner position)
and that the rate of growth of the stress converges to−0.337 (with a correlation coefficient ofR = 0.99989
for the power-law curve-fitting utilised). Hence, the asymptotic slope for the stress growth of Renardy’s
theory is reconfirmed by an alternative argument.
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Fig. 18. Asymptotic behaviour near the re-entrant corner for the linear PTT fluid (ε = 0.25): (a) velocity; (b) stress.

In terms of local variations of the different fields (velocity, stress and pressure) all the computed
results show smooth contour lines, with a concentration of stresses around the re-entrant corner and
formation of stress boundary layers along the wall of the downstream channel. In order to present
more quantitative results, we present inFigs. 21 and 22longitudinal profiles along the centreline (y =
0) of the axial normal stress component (τ xx) and the streamwise velocity component, for increas-
ing level of elasticity,De = 1, 5, 10, 20, 50 and 100. In part (a) of these figures, a fixed scale is
used to normalise the stress (3η0U2/H2) and the velocity (U2); in part (b), the normalising stress is
the fully developed shear stress at the wall for the PTT fluid (τw,PTT) and the normalising velocity is
the maximum centreline velocity for the PTT model under fully developed conditions. The purpose of
such normalisation is to separate elastic/elongational effects from shear-thinning effects, as discussed
hereafter.
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Fig. 19. Comparison of the asymptotic variation of (a) velocity and (b) normal stress along two radial lines:θ = 90◦ and
θ = 170◦. Predictions on mesh M6 for the linear PTT model (De = 1).

In Fig. 21(a)the highest normal stress along the centreline is seen to occur further inside the smaller
channel asDe is increased, and its magnitude is seen to decrease withDe. SinceDe is a measure of
the elasticity in this fluid/flow configuration, one would expect to observe an increase inτ xx,max with
elasticity; shear thinning is the only explanation for the decrease observed inFig. 21(a). By scalingτ xx
with the wall shear stress of the PTT fluid itself, for eachDe, one seeks to remove a significant part of
that shear-thinning effect and retain only the elastic effect.Fig. 21(b)shows thatτ xx scaled in this way
exhibits increase withDe, up to a level ofDe ≈ 20; for higherDe, τ xx,max tends to level out and decrease.

Such trend can be explained by examining the interrelated variations of elongational and shear charac-
teristics in simple rheometric flows.Fig. 23(a)shows that the elongational viscosityηE(ε̇) for the linear
PTT model withε = 0.25 reaches a plateau atλε̇ ≈ 20 and so elongational effects along the centreline
of the contraction should come to an end atDe ≈ 20 (in this figureε̇ andγ̇ are taken as equivalent). The
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Fig. 20. Stress behaviour near the singularity for the linear PTT fluid atDe = 1. (a) Variation of the predicted normal stress on
various meshes along first row of cells adjacent to downstream channel wall. (b) Variation of the maximum value of the normal
stress and its axial location, for each mesh, with distance to the wall. Best-fit correlations are also shown.

shear viscosity is however still decreasing at that range ofλγ̇ , albeit at a lower rate, hence the reduction
in maximumτ xx , seen inFig. 21(b), and the velocity overshoot, seen inFig. 22(b). Similar conclusions
apply to the gradual stagnation of the rate of increase ofΨ R andXR seen inFigs. 13 and 14, respectively.
An alternative explanation was given by Saramito and Piau[24] and later by Aboubacar et al.[8] who
correlated the vortex patterns with the Trouton rationTR = ηE/η in simple extensional and shear flows.
The rheometric data for the exponential PTT model is given inFig. 23(b)thus highlighting the differences
between the two forms of the PTT rheology.

A useful quantity one would like to know prior to carry out an actual simulation is the length of the outlet
channel required for full redevelopment of the stresses, as that determines the size of the computational
domain. From the creeping flow results obtained, it is clear that velocity develops very quickly, and the
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Fig. 21. Distribution of the axial normal stressτ xx for the linear PTT model along the centreline: (a) scaled withτw,0 = 3η0U2/H2;
(b) scaled withτw,PTT.

slower stress component to relax to its fully developed state is the axial normal stressτ xx acting along
the centreliney = 0 of the contraction. In fact, the results show thatτ xx at the wall reaches its fully
developed state much faster than at the centreline. For the purpose of predefining the computational
domain,Fig. 24presents the lengths (appropriately denotedLτxx) required forτ xx to fall to either 1 or
5% of its maximum value along the centreline (which occurs by the contraction plane). These values of
Lτxxevaluated on various meshes are seen to increase at a certain power of the Deborah number, tending
towards direct proportionality ofDeas the computational mesh employed becomes sufficiently long and
sufficiently refined. For the more precise criteria of 1%, we obtain the correlation:

Lτxx

H2
≈ 4.3De, (11)
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Fig. 22. Distribution of the axial velocity componentu for the linear PTT model along the centreline: (a) scaled withU2;
(b) scaled with maximum velocity for the PTT under fully developed conditions.

showing that the computational domain must be 430H2 long whenDe ≈ 100, while a length of 10H2

is adequate forDe = 1–2. However, we emphasise again that the method utilised does not need a
Dirichlet condition for stresses at outlet. In fact, the boundary condition applied is of the Neumann type
(∂τij/∂x = 0) and thus may lead to some localised distortions for the low Reynolds number flows here
considered (Re = 0); this type of error is not expected to affect the flow near the contraction, many
channel-widths upstream. In any case, outlet channel lengths in agreement withEq. (11)have been used
in the actual computations so that the Couette corrections could be evaluated with high precision.
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Fig. 23. Rheometric data of the PTT model withε = 0.25: (a) linear; (b) exponential.

6. Results for the exponential PTT fluid

For the exponential form of the PTT fluid, the results of our calculations forε = 0.25 are depicted in
Fig. 25, giving XR versusDe; in Fig. 26, givingΨ R versusDe; and inFig. 27, giving C versusDe; the
corresponding numerical data are listed inTable 4. Again, fair agreement is seen with computations by
Aboubacar et al.[8], except atDe = 0.1 for the reasons noted above. The uncertainties inTable 4are
somewhat higher than inTable 3because the runs here were based only on meshes M2 and M4, and not on
M6; however, except for two values of the recirculation intensity atDe = 100 and 1000, the uncertainty is
generally below 1%. In these runs, it was important to use an extended length for the downstream channel
asDe was increased, according to the estimate given byEq. (11); otherwise, the discrepancy between
results on meshes M2 and M4 would be visible in the figures. M4 was deemed adequate for this fluid
case; runs atDe = 1 and 100 on meshes M4 and M6 showed a difference inXR below 0.1 and 0.5% for
Ψ R.

In these simulations, the Deborah number was varied all the way fromDe = 0, the Newtonian case,
to the extremely high value ofDe = 10,000, when shear thinning becomes so strong that the apparent
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Fig. 24. Length required for relaxation of the normal stress as a function of the Deborah number (linear PTT,ε = 0.25).

viscosity is effectively reduced back to the level of the Newtonian solvent value. So, it is not surprising
to see that both the corner vortex size and its strength go through an initial maximum, atDe ≈ 6–7
when the Trouton ratioTR and the recoverable stressSR peak (cf.Fig. 23), followed by a reduction to
levels below those of the Newtonian case and then, asDe is further increased, they tend asymptotically
to the Newtonian values from below. There is thus confirmation that the predicted flow features are
again Newtonian-like at very high Deborah numbers. The fact that bothΨ R andXR are smaller than the
Newtonian values at an intermediateDe range is plausible, just as happened for the Oldroyd-B fluid. For
example, Saramito and Piau[24] (their Fig. 11b) and Aboubacar et al.[8] (their Figs. 14, 16 and 20) have
also found vortex intensities below the Newtonian values, with exponential versions of the PTT fluid.
Also, there is evidence of a very slight influence of mesh refinement, somewhat more accentuated for

Fig. 25. Variation of the vortex sizeXR with the Deborah numberDe (log scale) for the exponential PTT fluid withε = 0.25.
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Fig. 26. Variation of the corner vortex intensityΨ R with the Deborah numberDe (log scale) for the exponential PTT fluid with
ε = 0.25.

XR atDe ≈ 1000 (difference of 1.2% between results on meshes M2 and M4), but otherwise it has been
confirmed that mesh M4 is adequate to accurately resolve the main flow features. It should also be clear
from Fig. 24that very long outlet (and also inlet) channel lengths were employed in order to keep the
solution accuracy within reasonable bounds (the longest lengths wereL1 = 500H2 andL2 = 1500H2,
for De = 10,000).

As found previously by Keunings and Crochet[25] and Saramito and Piau[24] (although both these
studies were for axisymmetric contractions), and by Aboubacar et al.[8], the Couette correction for this
rheological model goes through a minimum at lowDe, and then increases whenDe is further increased,
more in line with experimental observations. However, real fluids tend to show much higher values of
localised pressure losses (that is, of Couette correction factorC). It is important to note that the wall
shear stressτw used for the normalisation of the pressure drop in the definition of Couette correction is

Fig. 27. Variation of the Couette correctionC with the Deborah numberDe (log scale) for the exponential PTT fluid with
ε = 0.25.
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Fig. 28. Predicted flow patterns with the exponential PTT fluid (ε = 0.25, mesh M4). Note:�ΨR = 0.2× 10−3 in recirculation.

the actual fully developed stress at the wall for the exponential form of the PTT model (including the
Newtonian contribution from the solvent stress). Its values were evaluated from the simulation results
and could be approximately checked with the analytical solution of Oliveira and Pinho[26], valid for
the situation without a solvent viscosity. For example, at lowDe, when the solvent viscosity may be
discarded, the analytical solution givesτw = 0.975 (De = 0.1) andτw = 0.913 (De = 0.2), while the
computations gave, respectively,τw = 0.977 andτw = 0.923. At highDe, when the 1/9 contribution from
the solvent should be added to the analytical solution, this yieldsτw = 0.267 forDe = 5 (computations
τw = 0.264) andτw = 0.199 forDe = 10 (computationsτw = 0.200), thus demonstrating the correctness
of the computed wall shear stress. Since thisτw shows a significant decrease withDeon account of shear
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thinning, part of the rise ofC (see alsoFig. 17) can be attributed to the influence of the scaling employed
to non-dimensionalise the pressure decrease.

The flow patterns for the exponential PTT are given inFig. 28, to be compared with the streamlines of
Fig. 16for the linear version of the PTT. Although the stream-function spacing inside the recirculation
is not exactly the same in both figures, it is clear that the exponential form exhibits smaller vortices with
less quantity of recirculating fluid. It may be concluded, based on the variations ofFig. 23, that these
features are related to either the levelling out and reduction of extensional viscosity at high strain rates
or the variation of the recoverable stress ratio.

7. Conclusions

The main purpose of the work was to give sufficiently accurate results for the vortex size and intensity,
and for the pressure loss, in planar contraction flows with a 4:1 cross-section area ratio, of Oldroyd-B
and PTT fluids with a solvent viscosity ratio ofηs/η0 = 1/9. These data are given inTables 2–4, where
the corresponding uncertainty is quantified. We expect that these extrapolated data, based on calculations
on very fine meshes, may be useful for other authors in validation/demonstration works. It is fair to note
that no data of similar quality existed previously to the present undertaking, in spite of the viscoelastic
flow through a planar contraction being accepted as a test case since 1988[1]. Finally, no upper limit
on De was found for the exponential form of the PTT constitutive model, while an approximate limit of
De ≈ 200 was found for the linear form, in contrast to maximum Deborah numbers of 9, for the linear
PTT, and 35, for the exponential PTT, found in[8].

All the computations have been carried out with a finite-volume method on very refined meshes,
with over 1 million degrees of freedom, and the spatial discretisation was based on a purpose-built
high-resolution scheme guaranteeing second-order accuracy and good iterative convergence properties.
Extreme care was exercised throughout this numerical study to guarantee that the results obtained were
accurate, and that their accuracy was reliably quantified. We hope the results may be useful for other
workers in the field.

Acknowledgements

M.A. Alves wishes to thank Universidade do Porto and his colleagues at Departamento de Engenharia
Qúımica, FEUP, for a temporary leave of absence. He also wishes to acknowledge the financial support
provided by Fundação Calouste Gulbenkian.

References

[1] O. Hassager, Working Group on Numerical Techniques, in: Proceedings of the Vth Workshop on Numerical Methods in
Non-Newtonian Flow, J. Non-Newtonian Fluid Mech. 29 (1988) 2–5.

[2] R.A. Brown, G.H. McKinley, Report on VIIIth International Workshop on Numerical Methods in Viscoelastic Flows,
J. Non-Newtonian Fluid Mech. 52 (1994) 407–413.

[3] Y. Fan, R.I. Tanner, N. Phan-Thien, Galerkin/least square finite-element methods for steady viscoelastic flows,
J. Non-Newtonian Fluid Mech. 84 (1999) 233–256.



M.A. Alves et al. / J. Non-Newtonian Fluid Mech. 110 (2003) 45–75 75

[4] M.A. Alves, F.T. Pinho, P.J. Oliveira, The flow of viscoelastic fluids past a cylinder: finite-volume high-resolution methods,
J. Non-Newtonian Fluid Mech. 97 (2001) 207–232.

[5] T.N. Phillips, A.J. Williams, Viscoelastic flow through a planar contraction using a semi-Lagrangian finite volume method,
J. Non-Newtonian Fluid Mech. 87 (1999) 215–246.

[6] M.A. Alves, F.T. Pinho, P.J. Oliveira, Effect of a high-resolution differencing scheme on finite-volume predictions of
viscoelastic flows, J. Non-Newtonian Fluid Mech. 93 (2000) 287–314.

[7] M. Aboubacar, M.F. Webster, A cell-vertex finite volume/element method on triangles for abrupt contraction viscoelastic
flows, J. Non-Newtonian Fluid Mech. 98 (2001) 83–106.

[8] M. Aboubacar, H. Matallah, M.F. Webster, Highly elastic solutions for Oldroyd-B and Phan-Thien/Tanner fluids with a
finite volume/element method: planar contraction flows, J. Non-Newtonian Fluid Mech. 103 (2002) 65–103.

[9] R. Ahmed, R.F. Liang, M.R. Mackley, The experimental observation and numerical prediction of planar entry flow and die
swell for molten polyethylenes, J. Non-Newtonian Fluid Mech. 59 (1995) 129–153.

[10] L.M. Quinzani, R.C. Armstrong, R.A. Brown, Use of coupled birefringence and LDV studies of flow through a planar
contraction to test constitutive equations for concentrated polymer solutions, J. Rheol. 39 (1995) 1201–1228.

[11] F. Legrand, J.M. Piau, Spatially resolved stress birefringence and flow visualization in flow instabilities of a
polydimethylsiloxane extruded through a slit die, J. Non-Newtonian Fluid Mech. 77 (1998) 123–150.

[12] P.J. Oliveira, F.T. Pinho, Plane contraction flows of upper convected Maxwell and Phan-Thien/Tanner fluids as predicted
by a finite-volume method, J. Non-Newtonian Fluid Mech. 88 (1999) 63–88.

[13] N. Phan-Thien, R.I. Tanner, A new constitutive equation derived from network theory, J. Non-Newtonian Fluid Mech. 2
(1977) 353–365.

[14] N. Phan-Thien, A nonlinear network viscoelastic model, J. Rheol. 22 (1978) 259–283.
[15] P.J. Oliveira, F.T. Pinho, G.A. Pinto, Numerical simulation of non-linear elastic flows with a general collocated finite-volume

method, J. Non-Newtonian Fluid Mech. 79 (1998) 1–43.
[16] M.A. Alves, P.J. Oliveira, F.T. Pinho, A convergent and universally bounded interpolation scheme for the treatment of

advection, Int. J. Numer. Meth. Fluids 41 (2003) 47–75.
[17] P.H. Gaskell, A.K.C. Lau, Curvature-compensated convective transport: SMART, a new boundedness preserving transport

algorithm, Int. J. Numer. Meth. Fluids 8 (1988) 617–641.
[18] M.A. Rogerson, Y.L. Yeow, Representation of Stokes flow through a planar contraction by Papkovich–Fadle eigenfunctions,

J. Appl. Mech. 66 (1999) 940–944.
[19] E.J. Hinch, The flow of an Oldroyd-B fluid around a sharp corner, J. Non-Newtonian Fluid Mech. 50 (1993) 161–171.
[20] M.A. Alves, P.J. Oliveira, F.T. Pinho, Numerical simulations of viscoelastic flow around sharp corners, in: Computational

Fluid and Solid Mechanics, Elsevier, Amsterdam, 2001, pp. 772–775.
[21] S. Nigen, K. Walters, Viscoelastic contraction flows: comparison of axisymmetric and planar configurations, J.

Non-Newtonian Fluid Mech. 102 (2002) 343–359.
[22] M. Renardy, Re-entrant corner behavior of the PTT fluid, J. Non-Newtonian Fluid Mech. 69 (1997) 99–104.
[23] R.I. Tanner, A. Jabbarzadeh, S.-C. Xue, Computations at sharp corners, in: proceedings of the XIIIth International Congress

on Rheology, vol. 2, Cambridge, 2000, pp. 181–183.
[24] P. Saramito, J.M. Piau, Flow characteristics of viscoelastic fluids in an abrupt contraction by using numerical modeling, J.

Non-Newtonian Fluid Mech. 52 (1994) 263–288.
[25] R. Keunings, M.J. Crochet, Numerical simulation of the flow of a viscoelastic fluid through an abrupt contraction, J.

Non-Newtonian Fluid Mech. 14 (1984) 279–299.
[26] P.J. Oliveira, F.T. Pinho, Analytical solution for fully developed channel and pipe flow of Phan-Thien–Tanner fluids, J.

Fluid Mech. 387 (1999) 271–280.


	Benchmark solutions for the flow of Oldroyd-B and PTT fluids in planar contractions
	Introduction
	Governing equations and numerical method
	Geometry and computational meshes
	Results for the Oldroyd-B fluid
	Results for the linear PTT fluid
	Results for the exponential PTT fluid
	Conclusions
	Acknowledgements
	References


